咨詢電話:18094238319
article解決方案
首頁 > 解決方案 > 炎熱時刻導致農業泥炭地的N2O和CH4排放量極高

炎熱時刻導致農業泥炭地的N2O和CH4排放量極高

更新時間:2024-03-12      點擊次數:61

        一、       研究背景

泥炭地是在長期淹水厭氧環境下有機質分解受抑制而導致泥炭層逐漸積累而發育形成的一類濕地生態系統,是地球上最具價值的生態系統類型之一,其在生物多樣性保護、水凈化和水循環調控、固碳和減緩氣候變化等方面發揮著至關重要的作用。然而,過去百年來全球泥炭地受到了人為排水活動和氣候變干的廣泛影響,據統計,全球大1113%的泥炭地受到了人為排水活動的干擾。泥炭地排水后主要用于農作物種植、家畜放牧、牧草生產、林業經營或泥炭開采。排水活動引起泥炭地水位劇烈下降,導致厭氧環境下上萬年才積累生成的泥炭土直接暴露在大氣中而被快速氧化分解,釋放出大量的溫室氣體如二氧化碳CO2)和氧化亞氮N2O),造成全球變暖,還引發泥炭地的大規模塌陷、顯著改變地表形態、破壞土壤結構,為其生態恢復帶來極大的難度。據估計,農業泥炭地排放的溫室氣體約占全球農田排放量的三分之一,但人們對這些排放的時間動態和控制知之甚少,尤其是氧化亞氮。

已排水的泥炭地僅占農業用地1%,但據估計,它們排放的二氧化(CO2)(CO2e)占全球耕地排放量32%。隨著泥炭地土壤被排干并暴露在大氣中,相對于其他生態系統,高有氧分解率導致了大量的二氧化碳呼吸率。泥炭的高分解率以及CH4N2O等其他重要溫室氣體的排放可能導致這些農業生態系統的大量溫室氣體凈排放。氮肥和洪水灌溉在泥炭地農業中很常見,可能為高反硝化率N2O生產創造最佳條件。排水泥炭地已被證明是重要的N2O來源,IPCC平均估計值,排水的農業泥炭地8kg N2O-N ha1y1。然而,很少有研究對多年來的氮排放進行連續測量,而且長期的農業泥炭地溫室氣體預算中往往沒有氮通量,部分原因是由于在野外條件下進行連續、長期的N2O通量測量所面臨的技術挑戰。

在農業泥炭地,使用傳統的手動靜態室,大多數氮通量測量是間歇性進行的,采樣頻率通常從每天一次到每月一次。然而,CH4N2O往往是溫室氣體排放的熱點,使用不頻繁的人工采樣方法難以表征,土壤(O2)、溫度、濕度和硝酸鹽濃度的動態變化可能會影響土N2O通量的熱時刻,因此這些事件的空間和時間動態如果沒有高頻測量就很難預測。手動采樣方法很難捕捉到土壤甲烷通量的高峰時刻。盡管排水農業泥炭地的甲烷通量被認為很小,但灌溉等實踐措施可以在一定時期內創造理想的厭氧條件,促進甲烷的產生。與恢復濕地中土壤溫度、水位波動和植物活動CH4交換的影響相比,灌溉農業土壤CH4通量的時空控制較少被了解。因此,需要使用連續的測量方法來捕捉土壤甲烷通量的高峰時刻,并確定其在年度溫室氣體預算中的作用。

近幾年發展起來的光腔衰蕩光譜技術和自動化室測量方法極大地提高了進行連續溫室氣體通量測量的能力。連續測量可以增加捕捉凈溫室氣體通量高峰時刻的機會,并確定它們在年度溫室氣體預算中的作用。結合連續土壤傳感器數據,可以利用時空密集的測量來探索土壤甲烷和氧化亞氮排放的潛在驅動因素。

二、       研究方法和數據分析

2.1研究方法

該研究在加利福尼亞州的薩克拉門托-圣華金三角洲地區進行,該地區的氣候屬于地中海氣候,夏季炎熱干燥,冬季涼爽潮濕。研究的田地連續種植10多年的傳統玉米作物,生長季節通過灌溉溝進行定期灌溉,冬季通過洪水灌溉使土壤表面上30厘米,以限制雜草生長并為候鳥提供棲息地。施肥量為118 KgN ha1 y1(農民數據)。該地區的歷史平均年溫度15.1±6.3,年平均降雨量326±4 mm。研究地點也是一AmeriFlux站點,2017年中期以來一直進行CO2、CH4和水蒸氣的連續渦度相關測量。

20176302020630日,使用自動系統連續測量了表層土壤N2O、CH4CO2通量。該系統由多路進樣系統九個不透明自動氣體通量室eosAC Eosense組成。多路系統發出信號,使自動氣體通量室將氣體傳送至腔衰蕩光譜儀Picarro G2508進行測量。儀器按照順序連續測量每個通量室,測試時間10min,吹掃時1.5min。自動氣體通量室布置在10×10米的網格中,每個通量室5米。為避免洪水事件對樣地的影響,在通量室外部署35cm高的項圈。除了田間管理活動(犁地、播種和收)(通常持1),整個田間活動期間,通量室都保持在原來的位置。

為了確定通量室的體積,大約每周測量一次圈口高度,并隨著時間的推移插入數值,以解釋土壤和地下水位高度的差異。使用Eosenseeosanalysis-acv.3.7.7軟件進行通量計算和擬合,然后RRStudio, v.1.1.4633, OConnell et al., 2018)中進行數據質量評估和控制。計算過程中刪除異常數據,這種數據過濾去掉2.4%的通量測量周期,最終生成的數據集分別包71262、7033770554CO2、N2OCH4的通量測量值。為了計算土壤溫室氣體通量對站點級全球變暖潛力(GWP)的影響,研究使用了同一站點的凈生態系統交換NEE)渦度協方差值。

研究人員通過統計學數據分析量CO2、CH4、N2O熱時刻,計算觀測到N2OCH4均值排放所需的最小樣本量。

2018920207月,10厘米、30厘米50厘米的深度安裝了兩套土壤傳感器--。熱敏電阻溫度傳感器和濕度傳感器,2套傳感器連接CR1000數據記錄儀,每15分鐘存儲數據。農業事件、作物收獲期間、斷電期間未采集溫濕度數據。在傳感器測量期(n=665),共58天的農業活動數據丟失或斷電。

在農業沼澤地進行了每周的土壤氣體采樣。研究者10厘米、30厘米50厘米深度上與土壤傳感器同時采集CO2、CH4N2O的兩個重復樣本。為了采集氣體樣本,研究者安裝了不銹鋼管道,并在管道上安裝了多個采樣孔。采樣孔每個月更換一次。他們使30毫升的注射器采集兩個氣體樣本,丟棄第一個樣本以清除采樣管道中的死體積。采樣線201956月從田間移除,進行耕作、種植和翻耕。這些氣體樣本存儲在過20毫升玻璃瓶中,直到Shimadzu GC-34上進行手動樣品注射分析。這些采樣數據用于研究土壤剖面中溫室氣體的產生分布情況。

2.2數據分析

使用一元方差分析ANOVA)來比較不同時間段土壤氣體濃度、氧氣、濕度、礦物質氮pH值之間的差異。還使用線性回歸分析探索土壤大氣溫室氣體濃度與凈土壤溫室氣體通量之間的關系。利用小波相干分析Wavelet coherence analysis)和假設性放大計算幫助我們理解溫室氣體通量與土壤變量之間的關系,揭示其在不同時間尺度上的變化。估計農業玉米沼澤地排放對該地區的潛在影響。

三、       結果

3.1CO2,N2OCH4排放

農業泥炭地的年土壤溫室氣體排放量,CO2的平均排放量9.20±0.04/平方/,N2O的平均排放量4.08±0.10/平方/,CH4的平均排放量681±157/平方/年。這些排放量分別代表了單位面積和單位產量的年均溫室氣體排放量。N2O的年排放量最高可41.5±1.8千克///年,三年的平均排放量26.0±0.5千克///年,占總溫室氣體排放量26%。CH4的排放量變化較大,從年凈消耗-111.0±5.0/平方/年到凈排放2220.1±519.7/平方/年不等。這相當于每年最大排放量6.1±1.4千克//公頃,占該生態系統年總溫室氣體排放量2%。土壤呼吸的變化較小,年值6.61±0.07CO2/平方/10.72±0.09CO2/平方/年之間。

img1 

 

 

 

 1  N2OCH4年平均值

 

 

熱點時刻被定義為單個通量測量值與年均值相差超4個標準差的測量值。熱點時刻的氧化亞氮通量僅占年度測量值0.64%1.50%,但將平均通量率提高38.5%76.3%。對于甲烷,熱點時刻的通量僅占年度測量值0.06%0.8%,但在23年,將年均通量提高132.1%486.4%。在1年,甲烷消耗的熱點時刻將凈甲烷匯增249.2%。這些熱點時刻驅動的甲烷通量變化主要是由于大多數甲烷通量測量值接近或等于零。二氧化碳排放的熱點時刻對平均二氧化碳通量的影響顯著較低,僅占所有通量的0.5%(年度范圍0.3%0.6%)。這將整體平均通量提高5%,年均二氧化碳通量提高2.6%9.2%。

3.2  N2O通量、CO2通量CH4通量驅動因素

冬季洪水使土壤中的N2O排放呈指數增長,在生長季節進行的灌溉和施肥也顯著增加N2O排放。冬季洪水開始后不久,每日平N2O通量增加了兩個數量級,同時土壤濕度上升,土O2濃度相應降低。持續的淹沒導致土壤NO3濃度下,隨N2O通量下降。在非洪水期間,研究者發現,每日平N2O通量與各深度的土N2O濃度顯著相關,可能對土-大氣界面的凈通量有貢獻。通過小波相干分析表明,所有深度的土壤濕度、土壤溫度和土O2濃度的時間模式與每日時間尺度上的N2O通量模式顯著相關。在大100天的季節時間尺度上,N2O通量與不同深度的土O2濃度以及在大300天的年度尺度上的土壤濕度具有顯著的一致性。

土壤濕度、土壤溫度和土壤氧氣濃度驅動了日尺度上凈甲烷通量的變化模式。只有土壤不同深度的氧氣濃度與甲烷通量在周尺度上具有顯著的相干性,而在更長的時間尺度上沒有顯著的相干性。CO2通量的高度季節性變化可以解釋觀察到的高年內變異性。土壤呼吸速率在生長季節和收獲后79月)較高,而在土壤飽和時123月)通量顯著較低。在日尺度上,濕度、溫度和氧氣濃度與土CO2通量具有顯著的相干性。在周尺度和季節尺度上,溫度和O2濃度與土CO2通量具有顯著的一致性。

img2 

 

 

 

 

 

 


 

 2日平均溫室氣體通(±SE); (a) CO2通量 (g CO2 m-2d-1)  (b) CH4通量, (mg CH4, m-2 d-1) (c) N2O通量 (mg N2O m-2 d-1),黑圈是每日平均通量測量值((mean n = 81 fluxes per day

 

 



img3 

 

 

 

 

 




3測量期間的日平(±SE) (a) N2O通量,(b)土壤NO3-濃度,(c)日平均土壤水分,(d)日平均土O2濃度。

 



        將
自動化系統通量室測量與通過渦協方差在該現場并行進行的生態系統呼(Reco)測量進行了比較。在整個研究期間,土CO2(9.20±0.04kg CO2m2y1)Reco協方差測量(9.70±0.01kgCO2m2y1)類似,CH4室通(1.2±0.01gCH4m2y1)低于渦流協方CH4(2.2±0.01gCH4m2y1)。同樣采樣頻率N2OCH4通量估算的影響較大,減少測量采樣間隔會導致顯著的低估或高N2OCH4總通量。

四、       討論

本研究中的農業泥炭地土壤N2O*端排放源,平均排放率比其他非泥炭農N2O排放量4-27。令人驚訝的是,冬季洪水,而不是施肥,是氧化亞氮排放的主要驅動因素。冬季洪水過后不久,N2O排放量達到峰值。種植期間氮肥的施用也導N2O排放量的短期增加,但這不是年N2O排放量的主要來源。研究結果表明日平均N2O通量與土壤大氣氮含量之間存在較強的相關性。

長時間的厭氧條件加上土壤溫度高10°C似乎會驅動這些系統CH4通量的熱時刻。洪水期NH4+濃度短期升高可能會限制產甲烷作用或暫時改變產甲烷途徑,并可能導致觀察到的相當大的變異性。預計土壤二氧化碳通量的模式與每周和季節尺度的溫度和氧氣濃度有關。土壤溫度O2可用性是有氧土壤呼吸的重要控制因素,特別是在排水農業泥炭地等生態系統中,其中基質可用性不太可能限制異養生物,而自養生物的養分可用性很高。

大型連續數據集使我們能夠探N2OCH4排放熱點時刻在生態系統溫室氣體總預算中的重要性。雖然熱點時刻分別僅占年N2OCH4通量測量值0.63%1.50%0.06%0.76%,但它們貢獻N2O總排放量76%CH4總排放量486%。這相當于N2O熱時刻排放就占這些農業泥炭地GWP18%。這凸顯出錯過熱點時刻可能會導致生態系統總溫室氣體預算的嚴重低估。

研究結果進一步強調了連續測量的必要性,以準確估計生態系N2OCH4總通量。即使每周采樣一次,也可能會低估N2O通量高20%,占GWP的很大一部分,即使來自這些高排放農業泥炭地也是如此。雖然連續自動室或渦流協方差測量是捕獲排放熱點時刻的理想選擇,但在許多地點和生態系統中,長期連續測量的成本仍然過高。如果熱點時刻是可預測且明確定義的,則每日通量測量可能可以有效地適當量N2O排放的熱點時刻。然而,如果熱點時刻的時間安排和控制未知或零星,那么不太頻繁的采樣可能會大大低N2O排放量。

本研究是迄今為止最大、最長的農業泥炭地土壤通量數據集之一。我們的研究結果提供了證據,證明這些系統是農業溫室氣體排放的重要貢獻者。連續數據集使我們能夠探索土壤水分、土壤O2和土N有效性等土地管理變化對土CH4N2O排放的影響。我們發現灌溉時間和持續時間是控制這些農業泥炭地土壤N2OCH4排放的主要因素,而不是施肥。 

設備推薦

Picarro G2508 高精度氣體濃度分析儀通過同時測量五種氣體N2O、CH4、CO2、NH3H2O),從根本上簡化了土壤通量研究,且描繪了溫室氣體土壤排放的全貌。土壤與大氣之間的溫室氣體交換是全球碳循環和氮循環的關鍵一步。G2508易于集成土壤檢測腔室,無需組裝或同步不同的氣體分析儀,就可以實現所有主要溫室氣體的行為觀測。G2508采用精密光腔衰蕩光譜CRDS)技術,以達十億分之一ppb)的靈敏度測量氣體濃度,其漂移可忽略不計。而且,Picarro的算法可以N2O、CH4CO2的濃度自動進行水汽影響校正。

 

 

北京世紀朝陽科技發展有限公司
  • 聯系人:程小姐
  • 地址:北京市海淀區北三環西路48號1號樓A座6A
  • 郵箱:nj@cen-sun.com
  • 傳真:
關注我們

歡迎您關注我們的微信公眾號了解更多信息

掃一掃
關注我們
版權所有 © 2024 北京世紀朝陽科技發展有限公司 All Rights Reserved    備案號:京ICP備05017992號-3    sitemap.xml
管理登陸    技術支持:化工儀器網    
亚洲中文字幕无码av在线,理论片午午伦夜理片久久,国产成人无码aⅴ片在线观看,亚洲精品色午夜无码专区日韩